Gamma-Ray Probes and Transfer Reactions

A. Couture

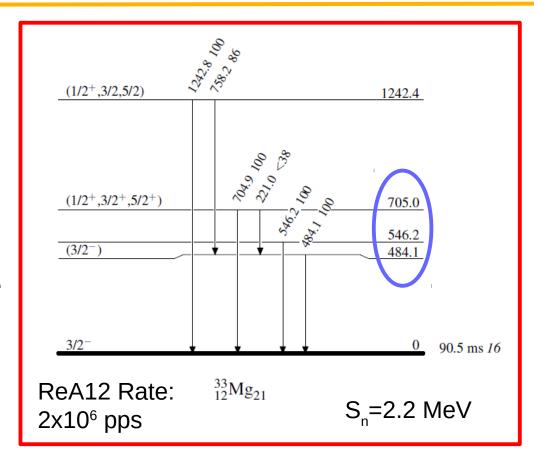
ReA Solenoid Spectrometer Project

Meeting

Argonne National Laboratory

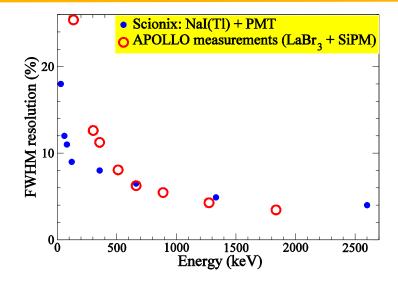
Argonne, IL

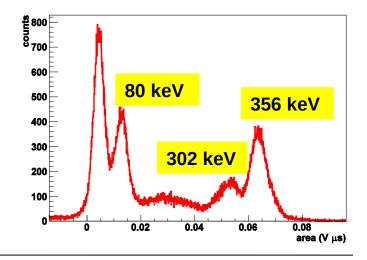
24 March 2017


Opportunities with Gamma-Ray Detection

- Studies of statistical properties
 - Jack discussed in detail
- Level tagging for structure studies
 - Resolution enhancement for S_p studies
- Diagnostics
 - Isomer Populations
 - Contaminant population
- Each of these questions drives design decisions

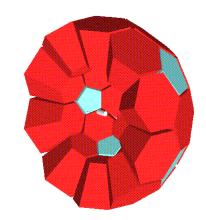
Structure of ³³Mg

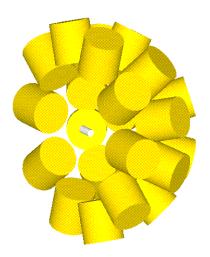

- Several state are closely spaced, making clean identification difficult, even with a HELIOS like instrument
- Additional gamma tagging can disentangle near-by states
- Photo-peak efficiency, resolution critical



These questions drive design

- Crystal type
 - What resolution is needed?
- Crystal depth
 - What energy photons need to be measured?
- Geometry
 - Close-packed vs. open geometry
- Efficiency





Geometry Options

- "Soccer-Ball"
 - Offers highest efficiency, add-back
 - Discussion of a close-packed array for use with HRS—sharing may be possible
 - Larger areas for light collection
 - More challenging for mounting
- Cylinder Design
 - Easy construction for crystals and array
- Close-Packed Hexagons (MTAS Style)
 - Highest Efficiency
 - Not well suited to solenoid measurements

Material and Crystal Depth: Are Ey > 1.5 MeV Needed?

Caintillet	Light Yield	1/e Decay	F. O. M.	Wavelength of maximum	Refractive	Density	Thickness (cm) for	Resolution Efficiency	
Scintillator	(photons/keV)		√(t/LY)	emission λm (nm)	index at λm	(g/cm ³⁾	50% attenuation (662keV)	662 keV	1332 keV
Nal(TI)	38	250	2.6	415	1.85	3.67	2.5	7.00%	"1"
BrilLanCe [™] 350	49	28	0.8	350	~1.9	3.85	2.3	3.10%	
BrilLanCe™ 380	63	16	0.5	380	~1.9	5.08	1.8	2.90%	1.43
BaF2	1.8	0.7	0.6	~210	1.54	4.88	1.9	8.50%	1.43
PreLude™ 420	32	41	1.1	420	1.81	7.1	1.1		
BGO	9	300	5.8	480	2.15	7.13	1.0		
CLYC	20	900	-	390				5.1	~1

Most data from St. Gobain data sheet, CLYC data from Glodo et al, IEEE Trans. Nucl. Sci. **55** (2008) 1206.

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

SiPM Technology Advances

- For Apollo
 - Wavelength shifter needed for LaBr₃
 - Packaging options limited
- Blue sensitivity has been enhanced
 - Performance near PMT resolution
- Versatile 3-6mm surface mount design allows custom shaping of light readout
 - Improves dark current as well as less "dead" cells
- Technology is changing VERY quickly

Detector Sharing Options

- Apollo detectors are available, though likely not optimal
- Hagrid LaBr₃ array was designed with detachable PMTs
 - 2x2" and 3x3" cylinders
 - Is geometry right?
 - 2x2" is too shallow for PSF studies, 3x3" may be difficult to pack
- Scintillator arrays for HRS may have similar concerns (Bfield sensitivity)
- Any of these options would want a new SiPM array set

Conclusions

- Gamma-detection should be considered in the physics justification and design process for a solenoid spectrometer
- The proof-of-principle has been completed—at this stage, we should consider in detail the requirements for where we need to be in 10 years
- Beams will always be less intense than hoped efficiency will always be in short supply

